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Synchronization of chaotic units coupled by their time-delayed variables is investigated analytically. A type
of cooperative behavior is found: Sublattice synchronization. Although the units of one sublattice are not
directly coupled to each other, they completely synchronize without time delay. The chaotic trajectories of
different sublattices are only weakly correlated but not related by generalized synchronization. Nevertheless,
the trajectory of one sublattice is predictable from the complete trajectory of the other one. The spectra of
Lyapunov exponents are calculated analytically in the limit of infinite delay times, and phase diagrams are
derived for different topologies.
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Two identical chaotic systems which are coupled to each
other can synchronize to a common chaotic trajectory. Both
of the systems are chaotic, but after synchronization the two
chaotic trajectories are locked to each other �1,2�. This phe-
nomenon has attracted a lot of research, partly because chaos
synchronization has the potential to be applied for novel se-
cure communication systems �3,4�. In fact, synchronization
and bit exchange with chaotic semiconductor lasers has re-
cently been demonstrated over a distance of 120 km in a
public fiber-optic network �5�.

Typically, the coupling between chaotic units has a time
delay due to transmission of the exchanged signal. Neverthe-
less, two chaotic systems can synchronize without delay, iso-
chronically, although the delay time may be very long. This
counterintuitive phenomenon has recently been demonstrated
with chaotic semiconductor lasers �6–9�, and it is discussed
in the context of corresponding observations on correlated
neuronal activity �10–12�.

In this paper we give an analytic solution of small net-
works of chaotic units coupled by their time-delayed vari-
ables. Motivated by chaotic lasers, we consider the competi-
tion between delayed self-feedback and coupling. For regular
networks which can be decomposed into two identical
sublattices—e.g., a ring with N=4 units in Fig. 1�b�—a new
kind of synchronization is observed: The units A and C as
well as the units B and D are completely synchronized. Even
for arbitrarily long delay times, the synchronization is isoch-
ronical; i.e., the trajectories of units A and C are identical
without any time shift. Although synchronization of A and C
is caused by the trajectory of B and D and vice versa, the
trajectories of A and B are not synchronized. Actually, we do
not even find generalized synchronization between A and B.
The cross correlations are symmetric; there is neither a
leader nor a laggard for the two sublattices. Each unit is
passive; i.e., it has negative Lyapunov exponents when it is
isolated and driven by an external signal. Nevertheless, the
mutual interaction of passive elements leads to high-
dimensional chaos with synchronized units in each sublat-
tice.

We have found sublattice synchronization in several cha-
otic networks, in particular for rate equations describing cha-
otic semiconductor lasers �13�. In this paper we analyze sub-
lattice synchronization using a simpler system—namely,

chaotic Bernoulli maps with delay, which allows analytical
as well as comprehensive numerical investigations �14,15�.
In the limit of long delay times, the spectra of Lyapunov
exponents, which are calculated analytically, determine the
phase boundaries between sublattice synchronization, com-
plete synchronization, and complete chaos.

Two mechanisms are included in our model: �i� delayed
feedback and �ii� delayed mutual coupling. The first mecha-
nism can generate high-dimensional chaos for each single
unit whereas the second one can synchronize the network.
The phenomena caused by these two mechanisms are cap-
tured by a network of iterated maps, given by the following
equations, j ,k=1, . . . ,N:

xt
j = �1 − ��f�xt−1

j � + ���f�xt−�
j � + �1 − ���

k

Fj,kf�xt−�
k �� .

�1�

Each node j of the network contains a variable
xt

j � �0,1� which is iterated in time t. Fj,k is the weighted
adjacency matrix which has a component 1 /zj if node j is

FIG. 1. Small networks of chaotic units. Double lines signify
bidirectional couplings whereas arrows show unidirectional cou-
plings. It turns out that each ring with an even number N of units
has Lyapunov exponents which are identical to a chain with
N /2+1 units.
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driven by node k and 0 otherwise, and zj is the number of
connections to node j.

Analytic calculations are possible for the Bernoulli shift
map f�x�= �ax�mod 1 which is chaotic for a�1 �16�. � is the
delay time, which, for simplicity, is identical for the feedback
as well as for the coupling. �Synchronization can also be
found for nonidentical delay times. But in that case, the syn-
chronization region in the parameter space is smaller �if it
exists� and extensive analytical calculations are not possible
anymore.� The parameter � determines the strength of the
delay terms while � determines the relative strength of the
self-feedback compared to the mutual coupling terms.

Now let us discuss stationary solutions of Eq. �1�. Com-
plete synchronization, xt

j =xt
k for all �j ,k�, is a solution of Eq.

�1�. In addition, several kinds of incomplete synchronization
are solutions, as well. For example, sublattice synchroniza-
tion, xt

j =xt
k for all nodes �j ,k� in each sublattice, is a solution,

too, if the network can be decomposed into two interconnect-
ing sublattices, as for the chains and rings in Fig. 1. But are
these solutions stable? Their stability has to be determined
from Eq. �1�. Let �xt

j be a small deviation from any given
trajectory xt

j. The linearized Eq. �1� is solved with the ansatz
�xt

j =ctv j, where the value �=ln �c� is the corresponding
Lyapunov exponents. We find that the vectors �v j� j=1,. . .,N are
eigenvectors of the adjacency matrix F and their correspond-
ing eigenvalues �q ,q=0, . . . ,N−1 determine the Lyapunov
exponents by

�q = −
�1 − ��ac�−1 + ��a − c�

��1 − ��a
. �2�

For each eigenvector, indexed by q=0, . . . ,N−1, this
polynomial equation �2� for c has � complex solutions cq,m,
m=1, . . . ,�, giving a total of N� Lyapunov exponents, which
are plotted in Fig. 2. The eigenvectors of F determine the N
directions of perturbation vq,j which shrink or explode with
the corresponding values of c.

Here we are interested in long delay times �→�. It
turns out that for each eigenvalue �q, q=0, . . . ,N−1, there is
one Lyapunov exponent of order 1 and �−1 exponents of
order 1 /� �see Fig. 2�. The large exponent is given by
�q

1=ln��1−��a� and merges with the band of the other �−1
exponents at the critical point

�c =
a − 1

a
. �3�

Consequently, for �	�c, stable synchronization does not ex-
ist.

The eigenvalues of the adjacency matrix F determine the
stability of synchronized trajectories according to Eq. �2�,
and they depend on the topology of the lattice. Let us con-
sider the rings and chains depicted in Fig. 1. We find that the
phase diagram of all six topologies is given by Fig. 3. To see
this, let us consider a ring of N mutually coupled chaotic
units with self-feedback, described by Eq. �1�. Figure 1
shows N=2, 4, and 6. By symmetry, the eigenvectors vq,j and
eigenvalues �q of the adjacency matrix F are the Fourier
modes �q=0, . . . ,N−1�:

vq,j = exp�2
ijq/N�, �q = cos	2
q

N

 . �4�

These eigenvalues determine the Lyapunov spectrum by Eq.
�2�. Using the methods of Ref. �16�, for large values of � the
maximal Lyapunov exponent is calculated as

�q
max =

1

�
ln�a���1 − ��cos	2
q

N

 + ��

1 − a�1 − �� ��� � �c� . �5�
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FIG. 2. Lyapunov spectra for the different modes q for N=4,
a=1.5, �=40, and �=1/4. At �=4/9 the �q=1� mode becomes
stable �→ sublattice synchronization�. At �=2/3 the �q=2� mode
�+1,−1, +1,−1� becomes stable, too �→ complete synchroniza-
tion�. See also Fig. 3.
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FIG. 3. Phase diagram for a=1.5. See text for assignment of the
different regions to complete and sublattice synchronization.
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The mode �q=0� with the corresponding eigenvector
�1,1 ,1 , . . . � is always unstable, �q=0

max�0; hence, the system
is chaotic for all parameters � and �. In fact, the system is in
a state of high-dimensional chaos �hyperchaos�, since the
Kaplan-Yorke dimension increases linearly with delay time
�.

The superpositions of the modes �q=1,q=N−1�, which
have degenerate eigenvalues, are perturbations which destroy
any structure of synchronization. They are unstable for

� � �q=1 =
1 − a

a��1 − cos	2


N

� + 1. �6�

An analysis of Eq. �5� shows that for even values of N, the
only perturbation which is relevant in the region �	�q=1 is
the perturbation of the mode �q=N /2�. The network is un-
stable against this mode for

� 	 �q=N/2 =
a − 1

2a�
. �7�

Since this mode corresponds to the eigenvector
�+1,−1, +1,−1, . . . ,−1�, it can destroy only complete but
not sublattice synchronization.

Equations �6� and �7� immediately determine the phase
diagram of the rings with N units in the �� ,�� plane, Fig. 3.
The ring with N=4 units, Fig. 1�b�, is completely synchro-
nized in region II �=IIa plus IIb�. But complete synchroniza-
tion cannot exist in region III, because there the q=N /2
mode is unstable. In this region the system is synchronized in
a sublattice configuration: the trajectory of A is completely
identical, without delay, with the one of C, and correspond-
ingly, B is identical to D.

When increasing the number N of units the �q=1� line of
Fig. 3 shrinks to the lower right corner. For N=6 we find
complete synchronization in the region IIb, while sublattice
synchronization occurs in region IIIb. In the latter region the
trajectories of A, C, and F as well as B, D, and G are iden-
tical, but the two different trajectories do not synchronize.

Finally, for large system size N synchronization disap-
pears completely. Complete synchronization exists up to
N	2
 / arccos� 3−a

1+a �, while sublattice synchronization re-
mains for larger sizes up to N	2
 / arccos� 1

a �. Consequently,
even for arbitrary large rings one obtains regions of complete
and sublattice synchronization if the chaos is sufficiently
weak. Asymptotically, sublattice synchronization is stable if
a is smaller than a�1+2�
 /N�2.

In our model the rings with an even number N of chaotic
units are equivalent to chains with N /2+1 units; i.e., the
corresponding rings have identical, but degenerate,
Lyapunov exponents. Hence the phase diagram of Fig. 3 de-
scribes synchronization of the chains Figs. 1�a�, 1�d�, and
1�e�, as well. Regions II and III also describe the infinite
chain with directed bonds of Fig. 1�f�. If the left unit A is just
a mirror, corresponding to a self-feedback of B with �=1,
the chain is in state of complete synchronization in these
regions. If, however, A is a chaotic unit, the infinite chain

switches to a state of complete synchronization in region II
and sublattice synchronization in region III.

These findings are not specific to rings and chains, since
we found sublattice synchronization in square lattices with
periodic boundaries �with even side lengths� as well as for
free boundaries �with even or odd side length�. In addition,
we found sublattice synchronization for a small triangular
lattice with three sublattices. Each sublattice synchronizes
completely, without time shifts, whereas the three trajectories
have only weak correlations.

Synchronization of the units of one sublattice is relayed
by the chaotic trajectory of the other one. Hence one would
expect some relation between these two chaotic trajectories
�or three for the triangular lattice�.

The cross correlations between the two sublattices are
shown in Fig. 4. For sublattice synchronization the central
peak, a remainder of complete synchronization, still exists, in
addition to correlations shifted by multiples of the delay time
�. Only when self-feedback is switched off, �=0, do the
isochronal correlations disappear. The correlations are com-
pletely symmetric in time shift ±�. In addition, when cross-
ing the phase boundary between sublattice synchronization,
complete synchronization, and complete chaos, the central
peak of the cross correlation changes discontinuously, similar
to a subcritical bifurcation. For large, but finite observation
times, our simulations even show hysteresis effects.

These findings are in agreement with corresponding ex-
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FIG. 4. Cross correlation C between At and Bt+� for a=1.5,
�=40, and �=0.7. �a� Complete synchronization. �b�, �c� Sublattice
synchronization.
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periments and numerical simulations of two bidirectionally
coupled semiconductor lasers �17,18�. Without self-feedback,
�=0, the lasers do not show isochronal synchronization but
they have strong correlations shifted by the transmission
time. Such a state has been named achronal synchronization.
For short time scales, however, the lasers show spontaneous
symmetry breaking into a leader-laggard state which we do
not observe for our model.

Apart from these weak correlations, is there any func-
tional relation between the two different trajectories? In par-
ticular, are the trajectories in a state of generalized synchro-
nization �19�? Several definitions of generalized
synchronization are reported in the literature �20�, and sev-
eral methods have been developed to detect such a state, in

particular for driven systems. Generalized synchronization
means that there exists a functional relation between the
states of the two systems. For our model, it means that there
exists a function between the sequence �xt

A , . . . ,xt−�
A � of A and

�xt
B , . . . ,xt−�

B � of B. This function may be fractal �1� or may
have several branches, which usually makes an analysis dif-
ficult. But at least for �=1 and �=2 the relation between
these two vectors can be easily visualized. Figure 5 shows
that the trajectories are not related by generalized synchroni-
zation in the phase of sublattice synchronization.

However, there is a related question: Can the trajectory of
sublattice B be predicted from knowledge of the complete
trajectory of A �21�? This question has a positive answer for
the configurations of Fig. 1. In regions II and III all units are
passive. This means, if we omit the drive, the last term of Eq.
�1�, each unit has negative Lyapunov exponents. Hence, if
this unit is driven, it will relax to a unique trajectory. Since
we find sublattice synchronization only for passive units, we
can predict the trajectory of B from knowledge of the com-
plete trajectory of A after some transient time. Note that for
two units we find complete synchronization for active units,
as well, but in this case, region I, the prediction is trivial.

Sublattice synchronization has not yet been found in ex-
periments. However, a chain of three lasers, Fig. 1�d�, has
been investigated with semiconductor lasers without feed-
back, �=0 �7,22�. Synchronization of the outer lasers has
been observed, being relayed by a different chaotic trajectory
of the internal laser, in agreement with our model. It would
be interesting to realize a network of mutually coupled cha-
otic semiconductor lasers and measure their patterns of syn-
chrony.
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